Complex Interpolation and Regular Operators between Banach Lattices
نویسنده
چکیده
We study certain interpolation and extension properties of the space of regular operators between two Banach lattices. Let R p be the space of all the regular (or equivalently order bounded) operators on L p equipped with the regular norm. We prove the isometric identity R p = (R ∞ , R 1) θ if θ = 1/p, which shows that the spaces (R p) form an interpolation scale relative to Calderón's interpolation method. We also prove that if S ⊂ L p is a subspace, every regular operator u : S → L p admits a regular extension ˜ u : L p → L p with the same regular norm. This extends a result due to Mireille Lévy in the case p = 1. Finally, we apply these ideas to the Hardy space H p viewed as a subspace of L p on the circle. We show that the space of regular operators from H p to L p possesses a similar interpolation property as the spaces R p defined above.
منابع مشابه
Order Almost Dunford-Pettis Operators on Banach Lattices
By introducing the concepts of order almost Dunford-Pettis and almost weakly limited operators in Banach lattices, we give some properties of them related to some well known classes of operators, such as, order weakly compact, order Dunford-Pettis, weak and almost Dunford- Pettis and weakly limited operators. Then, we characterize Banach lat- tices E and F on which each operator from E into F t...
متن کاملSome results about unbounded convergences in Banach lattices
Suppose E is a Banach lattice. A net in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to provided that the net convergences to zero, weakly. In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and from ideals and sublattices. Compatible with un-convergenc, we show that ...
متن کاملSome properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملAnalytic families of multilinear operators
We prove complex interpolation theorems for analytic families of multilinear operators defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We obtain analogous results for analytic families of operators defined on spaces generated by the Calderón method applied to couples of quasi-Banach lattices with nontrivial lattice convexity. As an application we derive a mul...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کامل